NEW PRODUCTS

Industry’s first low-noise buck converters with integrated ferrite-bead compensation simplify high-precision designs

DALLAS, Oct. 21, 2020 /PRNewswire/ — Texas Instruments (TI) (Nasdaq: TXN) today introduced a new family of low-noise DC/DC switching regulators with integrated ferrite-bead compensation. The TPS62912 and TPS62913 offer low noise of 20 µVRMS for frequencies ranging from 100 Hz to 100 kHz and ultra-low output-voltage ripple of 10 µVRMS, giving engineers the ability to remove one or more low-dropout regulators (LDOs) from their designs, reduce power losses by up to 76% and save 36% of board space. For more information, see www.ti.com/TPS62912-pr and www.ti.com/TPS62913-pr.

Noise in the power supply is a key design challenge in many high-precision test and measurement, medical, aerospace and defense, and wireless infrastructure applications. A traditional low-noise power-supply architecture includes a DC/DC converter; a low-noise LDO such as the TPS7A52, TPS7A53 or TPS7A54; and an off-chip filter, such as a ferrite bead. By integrating ferrite-bead compensation, the TPS62912 and TPS62913 use the ferrite bead already present in most systems as an effective filter against high-frequency noise, reducing the power supply output voltage ripple by approximately 30 dB and simplifying the power supply design. To learn how low-noise buck converters work, read the technical article, “Minimize noise and ripple with a low-noise buck converter.”

TI will demonstrate the TPS62913 in its virtual booth at the electronica virtual conference, Nov. 9-12, 2020. For more information, go to https://www.ti.com/about-ti/trade-shows/electronica.html.

Easily minimize power-supply noise

High-precision systems require supply rails with low noise and low ripple to preserve signal accuracy and integrity. The TPS62912 and TPS62913 offer both, along with a power-supply rejection ratio of 65 dB at up to 100 kHz. In addition, this buck converter family has an output-voltage error of less than 1%, which helps ensure tight output-voltage accuracy. Both converters enable the use of spread-spectrum frequency modulation to further attenuate radio-frequency spurs and allow synchronization to an external clock so engineers can easily meet their signal-to-noise ratio (SNR) and spurious-free dynamic range (SFDR) targets, which are critical in applications such as medical imaging or radar.

Maximize efficiency while reducing power loss

Historically, engineers have faced a trade-off between noise and efficiency when powering sensitive analog circuitry. Using a switching regulator on its own would result in too much switching noise, while adding a post-regulator LDO to reduce noise would lead to additional power losses, especially at high load currents. With a peak efficiency of 97%, the TPS62912 and TPS62913 allow engineers to design for noise filtering without an LDO, reducing power losses by up to 76% – 1.8 W in analog front-end (AFE) designs and 1.5 W in designs using a wideband analog-to-digital converter (ADC), such as the ADC12DJ5200RF. This represents a 20% and 15% increase in efficiency, respectively, when compared to a traditional low-noise power architecture. Read the application note, “Powering Noise-Sensitive ADCs with the TPS62913 Low-Ripple and Low-Noise Buck Converter,” to learn more.

Save board space and overall system cost

By using the TPS62912 or TPS62913 in their designs, engineers can eliminate not only the linear regulator but also the associated passive components, which can save approximately 20 mm2 of printed circuit board (PCB) area per LDO. Designs that typically use a single LDO can save 36% of PCB space. In addition, the integrated ferrite-bead compensation of the buck converters helps engineers reduce the overall DC/DC component count, eliminating two capacitors and two resistors from their designs, to further minimize overall system cost and shorten design time.

Availability and pricing

Pre-production quantities of the 2-A TPS62912 and 3-A TPS62913 are available now, only on TI.com, in a 2-mm-by-2-mm, 10-pin quad flat no-lead (QFN) package. Pricing starts at US$1.06 and US$1.16 respectively, in 1,000-unit quantities. The TPS62912EVM and TPS62913EVM evaluation modules are available on TI.com for US$49. Multiple payment and shipping options are available on TI.com. TI expects both devices to be available in volume production in the first quarter of 2021.

Liat

Recent Posts

Arrow Electronics and NX Technologies Collaborate to Advance Electrification in Transportation Segments

Arrow Electronics and Spanish manufacturer NX Technologies entered a collaboration that has accelerated the development…

10 hours ago

Nexperia’s new step-down DC-DC converters with lowest quiescent current enhance design flexibility

High efficiency converters deliver low output ripple from wide input voltage range  Nexperia today introduced…

2 days ago

IBM and L’Oréal to Build First AI Model to Advance the Creation of Sustainable Cosmetics

IBM (NYSE: IBM) and L'Oréal, the world's leading beauty company, announced a collaboration to leverage IBM's generative…

4 days ago

RIKEN adopts Siemens’ emulation and High-Level Synthesis platforms for next-generation AI device research

Siemens’ emulation and HLS platforms support leading Japanese research institute’s evaluation of optimized AI computing…

4 days ago

Nilus Raises $10M, Reaching $18M in Funding to Lead the Future of AI-Powered Treasury Management

Nilus, the first proactive AI-powered treasury management platform, has raised an additional $10M in a…

4 days ago

Reeco Raises $15M Series A Round to Modernize Hotel Procurement with AI-Driven Procure-to-Pay Platform

Funding will drive Reeco’s strategic growth initiatives as it streamlines back-of-house operations for North American…

1 week ago