Categories: LATEST NEWS

Imec world first to demonstrate 2 Metal layer back-end-of-line for the 3nm technology node

LEUVEN (Belgium), July 8, 2019 — This week, at its technology forum ITF USA 2019, imec, a world-leading research and innovation hub in nanoelectronics and digital technologies, presents a dual-damascene 21nm pitch test vehicle relevant for manufacturing the 3nm logic technology node. With this test vehicle, a 30 percent improvement in resistance-capacitance product (RC) was obtained compared to previous generations, without impacting reliability. The need for implementing scaling boosters such as self-aligned vias and self-aligned blocks in 3nm and beyond interconnect technologies has been demonstrated.

While the dimensional scaling of traditional front-end technologies is expected to slow down, the back-end-of-line dimensions keep on scaling with ~0.7X to keep up with the required area scaling. For the 3nm logic technology node, M2 interconnect layers with metal pitches as tight as 21nm need to be manufactured while preserving the back-end-of-line’s performance. This implies a tight control of the RC delay, while maintaining good reliability.

Imec for the first time demonstrated a dual-damascene 21nm metal pitch test vehicle that is relevant for the 3nm technology node. The measured RC shows a 30 percent improvement compared to previous generations. The test vehicle also performs well in terms of reliability: no electromigration failures were observed after 530 hours at 330°C, and dielectric breakdown (TDDB) measurements demonstrated a time-to-failure >10 years at 100°C.

To pattern the M2 layer, a hybrid lithography approach was proposed, using 193nm immersion-based self-aligned quadrupole patterning (SAQP) for printing the lines and trenches, and extreme ultraviolet lithography (EUVL) for printing the block and via structures. The test vehicle implemented a barrier-less ruthenium (Ru) metallization scheme and an insulator with dielectric constant k = 3.0.

First results also demonstrate that the proposed interconnect technology can be improved by adding scaling boosters, including buried power rail, SuperVia, self-aligned blocks, fully self-aligned vias and double self-aligned blocks.

Liat

Recent Posts

Rohde & Schwarz launches R&S NRP140TWG(N) thermal power sensor: A new benchmark for F band applications

Rohde & Schwarz presents the new R&S NRP140TWG(N) thermal power sensor, designed to meet the…

2 hours ago

Melexis illuminates the future of automotive lighting with MeLiBu® 2.0

Tessenderlo, Belgium 13 March 2025 – Melexis is pleased to unveil the MLX80142 two RGB…

3 hours ago

High Performance Fuse for Automotive Applications Reliable Protection for High-Voltage Systems in Electric Vehicles

SCHURTER presents the AMO 10.3x38 – a high-performance fuse designed for demanding automotive applications. It…

3 hours ago

CoolSiC™ Schottky diode 2000 V now available in TO-247-2 package, enabling higher efficiency and simplifying designs

Many industrial applications today are moving towards higher power levels with minimized power losses. One…

3 hours ago

QuamCore Emerges from Stealth with $9 Million in Seed Funding to Build World’s First Scalable 1 million Qubit Quantum Computer

Breakthrough in superconducting digital logic removes quantum scaling barriers, paving the way for large-scale quantum…

3 days ago

Qualcomm to Bolster AI and IoT Capabilities with Edge Impulse Acquisition

Highlights:  Acquisition complements strategic approach to IoT transformation, enhances developer enablement and expands leadership in…

6 days ago