LATEST NEWS

How to get a server rack in your back pocket?

This week, imec, a world-leading research and innovation hub in nanoelectronics and digital technologies, presents TEMPO: a unique cross-border collaboration between 19 research and industrial partners, funded by ECSEL Joint Undertaking which supports public-private partnerships in the EU. The three-year program aims at developing process technology and hardware platforms leveraging emerging memory technologies for neuromorphic computing for future applications in mobile devices that need complex machine-learning algorithms. It is a one-of-a-kind collaboration effort to enable applications that now need cloud-based server racks, to be executed within battery-powered mobile devices such as cars and smartphones (at the edge of the internet-of-things).

Increasingly, edge artificial intelligence and machine-learning algorithms enter our day-to-day products and applications such as smart home assistants with natural-language processing, face-recognition-based security systems or autonomous vehicles. In the coming years, the demand for these increasingly complex computational algorithms will only grow further. At this moment, high-end server parks process the data in the cloud. However, sending data to the cloud costs energy, latency, and is often not preferred for privacy reasons. As such, the ultimate edge artificial intelligence applications require intelligent energy-efficient local processing.

TEMPO aims to tackle this challenge by leveraging the process technology platforms that are being developed by the European research technology organizations and cooperating foundries in the project, and combining it with the application and hardware knowledge from further partners. The TEMPO project will evaluate the current solutions at device, architecture and application level, and build and expand the technology roadmap for European AI hardware platforms. The project will leverage MRAM (imec), FeRAM (Fraunhofer) and RRAM (CEA-Leti) memory to implement both spiking neural network (SNN) and deep neural network (DNN) accelerators for 8 different use cases, ranging from consumer to automotive and medical applications.

Emmanuel Sabonnadiere, CEO at CEA-Leti: “It is our aim to sweep technology options, covering emerging memories, and attempt to pair them with contemporary (DNN) and exploratory (SNN) neuromorphic computing paradigms. The process- and design-compatibility of each technology option will be assessed with respect to established integration practices and meet our industrial partner roadmaps and needs to prepare the future market of Edge IA where Europe is well positioned with multiple disruptive technologies.”

Prof. Hubert Lakner, Director of the Fraunhofer Institute for Photonic Microsystems (IPMS) and Chairman of the Board of Directors of the Fraunhofer Group Microelectronics: “A key enabler for machine learning and pattern recognition is the capability of the algorithms to browse through large datasets. Which, in terms of hardware, means having rapid access to large memory blocks. Therefore, one of the key focal areas of TEMPO are energy efficient nonvolatile emerging memory technologies and novel ways to design and process memory and processing blocks on chip.”

Luc Van den hove, CEO at imec: “We are delighted to enter in such broad European collaboration effort on Edge Artificial Intelligence, gathering the relevant stakeholders in Europe, including CEA-Leti and Fraunhofer, two of our most renowned colleague research centers in Europe. Thanks to our combined expertise, we can scan more potential routes forward than what would be possible by each of us individually, and as such, position Europe in the driver seat for R&D on AI. Imec looks forward to the progress we can make together in the TEMPO project and hopes this will lead to more similar collaborations in the future. Behind the scenes, we are already defining more public and bilateral agreements with several of the partners involved.”

Lihi

Recent Posts

RIKEN adopts Siemens’ emulation and High-Level Synthesis platforms for next-generation AI device research

Siemens’ emulation and HLS platforms support leading Japanese research institute’s evaluation of optimized AI computing…

10 hours ago

Nilus Raises $10M, Reaching $18M in Funding to Lead the Future of AI-Powered Treasury Management

Nilus, the first proactive AI-powered treasury management platform, has raised an additional $10M in a…

10 hours ago

Reeco Raises $15M Series A Round to Modernize Hotel Procurement with AI-Driven Procure-to-Pay Platform

Funding will drive Reeco’s strategic growth initiatives as it streamlines back-of-house operations for North American…

3 days ago

Introducing RUBY-W2: u-blox’s first Wi-Fi 7 module for superior Apple® CarPlay and Android® Auto user experience

Connect more concurrent users with the advanced Wi-Fi 7 capabilities of the Snapdragon® Auto Connectivity…

3 days ago

Anritsu Extend Spectrum Measurement Frequency to Millimeter-wave Band with External Mixer from VDI or Eravant

- Supporting Millimeter-wave Band of Medical and Automotive Device Evaluations - Anritsu Corporation is pleased…

3 days ago

ROHM Offers the Industry’s Smallest* Terahertz Wave Oscillation and Detection Devices

Price range is less than one-tenth that of conventional devices while achieving remarkable space-savings ROHM…

3 days ago