LATEST NEWS

Slow ‘hot electrons’ could improve solar cell efficiency

Photons with energy higher than the ‘band gap’ of the semiconductor absorbing them give rise to what are known as hot electrons. The extra energy in respect to the band gap is lost very fast, as it is converted into heat so it does not contribute to the voltage. University of Groningen Professor of Photophysics and Optoelectronics Maria Antonietta Loi has now found a material in which these hot electrons retain their high energy levels for much longer. This might make it possible to use more of their energy to obtain a higher voltage. 

The efficiency of solar panels is hampered by a Goldilocks problem: photons need to have just the right amount of energy to be converted into free electrons, which contribute to the voltage. Too little energy, and the photons pass right through the solar panel. Too much, and the excess energy disappears as heat.

Perovskites

The latter is due to the creation of hot (high-energy) electrons. Before they can be extracted from the solar cells, these hot electrons first give off their excess energy by causing vibrations in the crystalline material of the solar panel. ‘This energy loss puts a limit to the maximum efficiency of solar cells’, explains Loi.

She is working on a special type of solar cell that is made of organic-inorganic hybrid perovskites. Perovskites are named after a mineral that has the chemical formula ABX3. In the X position, anions form an octahedron, while in the A position cations form a cube around them, while a central cation takes the B position. Many materials in the perovskite family adopt this crystal structure. Hybrid perovskites contain organic cations in the A position.

Lifespan

prof. Maria Loi | Photo Sylvia Germes

Most hybrid-perovskite solar cells contain lead, which is toxic. Loi’s group recently published a paper describing a record-breaking nine-percent efficiency in a hybrid-perovskite solar cell containing harmless tin instead of lead. ‘When we studied this material further, we observed something strange’, she continues. The results could only mean that the hot electrons produced in the tin-based solar cells took about a thousand times longer than usual to dissipate their excess energy.

‘The hot electrons gave off their energy after several nanoseconds instead of some hundred femtoseconds. Finding such long-lived hot electrons is what everybody in this field is hoping for’, says Loi. Their longer lifespan makes it possible to harvest these electrons’ energy before it turns into heat. ‘This means we could harvest electrons with a higher energy and thus create a higher voltage in the solar cell.’ Theoretical calculations show that by harvesting the hot electrons, the maximum efficiency for hybrid-perovskite solar cells could increase from 33 to 66 percent.

Clean energy

Laserlight exciting the hybrid perovskite | Illustration Arjen Kamp

The next step is to find out why the tin-based hybrid perovskite slows down the decay of hot electrons. Then new perovskite materials could be designed with even slower hot electrons. ‘These tin-based perovskites could be a game changer, and could ultimately make a big contribution to providing clean and sustainable energy in the future.’

Liat

Recent Posts

Molex Anticipates Steady Growth in High-Speed Connectivity in 2025, Driving Electronics Design Innovations Across Diverse Industry Sectors

• Increase in opportunities predicted for high-speed optical transceivers and miniaturized connectivity solutions to address…

2 days ago

Alphawave Semi Drives Innovation in Hyperscale AI Accelerators with Advanced I/O Chiplet for Rebellions Inc

Rebellions Selects Alphawave Semi's Multiprotocol Chiplet Solutions To Deliver Breakthrough Performance in Generative AI workloads…

2 days ago

Valeo & ROHM Semiconductor co-develop the next generation of power electronics

Valeo, a leading automotive technology company, and ROHM Semiconductor, a major semiconductor and electronic component…

2 days ago

New EiceDRIVER™ Power family of full-bridge transformer drivers for compact and cost-effective gate driver supplies

 Infineon Technologies AG (FSE: IFX / OTCQX: IFNNY) introduces the EiceDRIVER™ Power 2EP1xxR family of…

2 days ago

Unparalleled accuracy and longevity: Panasonic Industry presents brand new ultra-compact Air Quality Sensor

Next level monitoring precision of particulate matter, temperature, humidity, and total volatile organic compounds (TVOCs)…

2 days ago

Bitsight to Acquire Cyber Threat Intelligence Leader Cybersixgill to Help Enterprises to Preempt Cyber Attacks

Plans to Deliver Advanced Threat Intelligence within its Attack Surface and Third-Party Risk Solutions  Bitsight,…

4 days ago