LATEST NEWS

Samsung Mass Produces Industry’s First Application Processor for Wearable Devices Built on 14-Nanometer FinFET Technology

Samsung Electronics, a world leader in advanced semiconductor technology, today announced that it has begun mass production of the Exynos 7 Dual 7270. It is the first mobile application processor (AP) in the industry designed specifically for wearable devices with 14-nanometer (nm) FinFET process technology. It is also the first in its class to feature full connectivity and LTE modem integration.

Since 2015, Samsung has been leading the industry in expanding the adoption of 14nm technology for a wide variety of products from premium smartphones to entry-level mobile devices. With the Exynos 7270, the company also introduces the benefits of this cutting-edge technology to wearables.

“The Exynos 7270 presents a new paradigm for system-on-chips (SoC) dedicated to wearables,” said Ben K. Hur, Vice President of System LSI Marketing at Samsung Electronics. “Designed on our state-of-the-art process technology, this AP offers great power savings, 4G LTE modem and full connectivity solution integration, as well as innovative packaging technology optimized for wearable devices. It is a ground-breaking solution that will greatly accelerate wider adoption of wearable devices by overcoming limitations in current solutions such as energy usage and design flexibility.”

Powered by two Cortex®-A53 cores, the Exynos 7270 makes full use of the 14nm process, delivering 20 percent improvement in power efficiency when compared to its predecessor built on 28nm, and thus notably extending the battery life. By integrating Cat.4 LTE 2CA modem, the new AP allows wearables to connect to a cellular service as a stand-alone device. Tethering and data transfer between devices is also possible with its embedded WiFi and Bluetooth connectivity. In addition, integrated connectivity capabilities support FM (frequency modulation) radio, and location-based services with GNSS (global navigation satellite system) solutions.

As well as the implementation of the advanced 14nm FinFET process, Samsung’s innovative packaging technology, SiP(system-in-package)-ePoP(embedded package-on-package), enables the Exynos 7270 to feature outstanding performance and energy-efficiency within a compact solution optimized for wearable devices. The technology combines the AP, DRAM and NAND flash memory chips as well as the PMIC (power management IC) together into a single package. The solution can offer more features than its predecessor in the same 100-square-millimeter (mm2) area while reducing the height by approximately 30 percent. This gives more room for device manufacturers to design high performance, ultra-slim wearable devices.

Liat

Recent Posts

eInfochips and NXP Collaborate to Enable Battery Energy Storage Customers

 eInfochips, an Arrow Electronics company, today announced its expanded collaboration with NXP® Semiconductors to help…

2 hours ago

DigiKey Adds More Than 611,000 Products and 139 New Suppliers in Q3 2024

 DigiKey, a leading global commerce distributor offering the largest selection of technical components and automation…

5 hours ago

Infineon launches new generation of GaN power discretes with superior efficiency and power density

Infineon Technologies AG (FSE: IFX / OTCQX: IFNNY) today announced the launch of a new…

2 days ago

Power Integrations Launches 1700 V GaN Switcher IC, Setting New Benchmark for Gallium Nitride Technology

1700 V GaN InnoMux-2 IC delivers efficiency of better than 90 percent from a 1000…

2 days ago

NVIDIA Ethernet Networking Accelerates World’s Largest AI Supercomputer, Built by xAI

NVIDIA today announced that xAI’s Colossus supercomputer cluster comprising 100,000 NVIDIA Hopper Tensor Core GPUs…

1 week ago

Siemens strengthens leadership in industrial software and AI with acquisition of Altair Engineering

Acquisition of Altair Engineering Inc., a global leader in computational science and artificial intelligence software,…

1 week ago