Categories: LATEST NEWS

New test to improve commercial viability of printable electronics

Scientists at the National Physical Laboratory (NPL) have developed a new, non-destructive method of detecting the orientation of molecules in organic semiconductor transistors using Raman spectroscopy. This will create a faster and more flexible method of measuring the efficiency of electrical conductivity in a printed circuit, enabling scientists to understand the quality of their devices.

Modern electronic devices such as solar cells can lower costs and weight by using organic semiconductors, in this case organic polymer molecules which conduct electricity, as they can be printed onto thin sheets of plastic material in large volumes. However, printing these polymer molecules means that they can crystallise in all directions which reduces their conductivity. Thus, being able to measure the orientation of these molecules is a crucial part of the quality control process.

Making non-destructive measurements of these molecules has been impossible before now. By using Raman spectroscopy, scientists can observe the way in which a molecule vibrates when light shines on it. Different vibrations cause light reflected from the molecule to have different frequencies. Molecules with different orientations vibrate differently as lasers are passed over them, resulting in a range of frequencies. The technique developed by NPL uses these reflected frequencies to discern the three dimensional orientation of the molecules within the printed circuit.

Using the new test, the efficiency of the production process for electronic devices can be drastically increased making them cheaper, faster and of better quality.

Dr Sebastian Wood, a Higher Research Scientist at NPL, says: “Understanding molecular orientation has been an area of interest to the printed electronics community for over a decade, with various one and two dimensional tests being undertaken. NPL is the first organisation to characterise this important property efficiently and in three dimensions, without destroying the test circuit. We’re excited to be the organisation that enables what could be a revolutionary breakthrough in the performance and commercial viability of printable electronics.”

The research has been published in Scientific Reports and reported in New Electronics

Find out more about Electrochemistry at NPL or contact Sebastian Wood for more information

Liat

Recent Posts

Lenovo Just Launched the World’s First Laptop with an Under-Display Camera: Here’s How They Did It

Lenovo has redefined laptop innovation with the introduction of the Yoga Slim 9i, the world’s…

3 days ago

Power Supplies 10 to 50W industrial power supply series expanded with new mounting and protection options for increased system flexibility

TDK Corporation (TSE 6762) announces the introduction of multiple option configurations for the TDK-Lambda brand…

3 days ago

Nordic Semiconductor collaborates with Deutsche Telekom to make everything cellular connected

Introducing MECC: A seamless, scalable solution to unlock global IoT connectivity using nRF9151 module Nordic…

3 days ago

ROHM’s EcoGaN™ has been Adopted for AI Server Power Supplies by Murata Power Solutions

TOLL package 650V GaN HEMTs contribute to improving power supply efficiency Willich-Münchheide, Germany, March 05,…

3 days ago

Microchip Technology Releases Versatile MPLAB® PICkit™ Basic Debugger

Development tool offers powerful debugging at a more affordable price for professional engineers, students and…

3 days ago

Infineon extends radiation-tolerant power MOSFET portfolio for space applications with first P-channel device

Infineon Technologies AG (FSE: IFX / OTCQX: IFNNY) today announced the addition of P-channel power MOSFETs…

3 days ago