Categories: LATEST NEWS

Infineon and Imec cooperate on 79 GHz CMOS radar sensor chips for the automotive industry

Joint publication by Infineon Technologies and imec

The world-leading nanoelectronics research center imec and semiconductor manufacturer Infineon Technologies AG (FSE: IFX / OTCQX: IFNNY) today announced that they are cooperating in CMOS sensor chip development. Based on the agreement unveiled at the annual Imec Technology Forum in Brussels (ITF Brussels 2016), Infineon and imec are working on highly integrated CMOS-based 79 GHz sensor chips for automotive radar applications. Imec contributes its advanced expertise in high-frequency system, circuit and antenna design for radar applications thus complementing Infineon’s radar sensor chip knowledge.

As an important step towards the fully automated car, the development of a first demonstrator in 28 nm CMOS technology is well under way. Infineon and imec expect functional CMOS sensor chip samples in the third quarter of 2016. A complete radar system demonstrator is scheduled for the beginning of 2017.

Typically, there are up to three radar systems in today’s vehicle equipped with driver assistance functions. In the future, with fully automated cars up to ten radar systems and ten more sensor systems using camera or lidar technologies may potentially be utilized.

“Infineon enables the radar-based safety cocoon of the partly and fully automated car,” said Ralf Bornefeld, Vice President & General Manager, Sense & Control, Infineon Technologies AG. “In the future, we will manufacture radar sensor chips as a single-chip solution in a classic CMOS process for applications like automated parking. Infineon will continue to set industry standards in radar technology and quality.”

“We are excited to work with Infineon as a valuable partner in our R&D program on advanced CMOS-based 77 GHz and 79 GHz radar technology,” said Wim Van Thillo, program director perceptive systems at imec. “Compared to the mainstream 24 GHz band, the 77 GHz and 79 GHz bands enable a finer range, Doppler and angular resolution. With these advantages, we aim to realize radar prototypes with integrated multiple-input, multiple-output (MIMO) antennas that not only detect large objects, but also pedestrians and bikers and thus contribute to a safer environment for all.”

Liat

Recent Posts

QuamCore Emerges from Stealth with $9 Million in Seed Funding to Build World’s First Scalable 1 million Qubit Quantum Computer

Breakthrough in superconducting digital logic removes quantum scaling barriers, paving the way for large-scale quantum…

2 days ago

Qualcomm to Bolster AI and IoT Capabilities with Edge Impulse Acquisition

Highlights:  Acquisition complements strategic approach to IoT transformation, enhances developer enablement and expands leadership in…

5 days ago

Tower Semiconductor and Innolight Expand their Collaboration and Ramp Volume of Next-Generation SiPho Solutions for AI and Data Centers

New Technology Halves Laser Requirements for Streamlined, High-Volume Optical Module Production to Meet Growing AI…

5 days ago

Lenovo Just Launched the World’s First Laptop with an Under-Display Camera: Here’s How They Did It

Lenovo has redefined laptop innovation with the introduction of the Yoga Slim 9i, the world’s…

1 week ago

Power Supplies 10 to 50W industrial power supply series expanded with new mounting and protection options for increased system flexibility

TDK Corporation (TSE 6762) announces the introduction of multiple option configurations for the TDK-Lambda brand…

1 week ago

Nordic Semiconductor collaborates with Deutsche Telekom to make everything cellular connected

Introducing MECC: A seamless, scalable solution to unlock global IoT connectivity using nRF9151 module Nordic…

1 week ago