The collaboration, which is partly funded by Innovate UK under the £14m Energy Catalyst Programme, follows on from work by Anvil Semiconductors and the Cambridge Centre for GaN at the University of Cambridge where they successfully grew cubic GaN on 3C-SiC on silicon wafers by MOCVD. The underlying 3C-SiC layers were produced by Anvil using its patented stress relief IP that enables growth of device quality silicon carbide on 100mm diameter silicon wafers. The process is readily migrated onto 150mm diameter wafers and potentially beyond without modification and is therefore suitable for large, industrial-scale applications. Plessey have started to commercialise LEDs produced in conventional (Hexagonal) GaN grown 150mm silicon wafers using IP originally developed at The University of Cambridge. Anvil’s high quality 3C-SiC on Silicon technology, which is being developed for SiC power devices, provides an effective substrate, to allow single phase cubic GaN epitaxy growth and provides a process which is compatible with Plessey’s GaN on Si device technology.
Keith Strickland, the CTO of Plessey commented: “At Plessey we are constantly striving to find novel technology that can enhance our LED products. The work that has previously been carried out at the University of Cambridge in collaboration with Anvil Semiconductors has demonstrated that high quality cubic-GaN can be grown on large area Si substrates compatible with our manufacturing process. This has opened up the possibility to develop green LEDs with high efficiency that will allow us to demonstrate a new generation of efficient and controllable lighting products ”
Professor Sir Colin Humphreys, Director of the Cambridge Centre for GaN added: ” The properties of Cubic GaN have been explored before, but the challenges of growing this thermodynamically unstable crystal structure have limited its development. The high quality of Anvil’s cubic SiC on Si substrates and our experience of developing conventional GaN LED structures on large area wafers have enabled a breakthrough in material quality. This latest project will build on our ongoing collaboration with Plessey to deliver for the first time green LED devices with efficiency approaching that in blue and red LEDs.”
Jill Shaw, CEO of Anvil added: “Our cubic SiC on Si has unlocked a route to large area growth of cubic GaN. We are delighted to be collaborating on this exciting project that offers the possibility of exploiting our technology in high efficiency LEDs as well as in our core low cost, high efficiency power electronics markets.”
eInfochips, an Arrow Electronics company, today announced its expanded collaboration with NXP® Semiconductors to help…
DigiKey, a leading global commerce distributor offering the largest selection of technical components and automation…
Infineon Technologies AG (FSE: IFX / OTCQX: IFNNY) today announced the launch of a new…
1700 V GaN InnoMux-2 IC delivers efficiency of better than 90 percent from a 1000…
NVIDIA today announced that xAI’s Colossus supercomputer cluster comprising 100,000 NVIDIA Hopper Tensor Core GPUs…
Acquisition of Altair Engineering Inc., a global leader in computational science and artificial intelligence software,…